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Note 

On the Efficient Evaluation 
of Modified Bessel Functions of Zeroth and First Orders 

for Arguments of the Form x exp(in/ 

1. INTRODUCTION 

Mason and Sykes [l] hereinafter MS, developed a three-dimensional model of wind 
flow over low hills based on the two-dimensional theory of Jackson and Hunt ]2]. 
hereinafter JH. This theory gives approximate analytic solutions to the governing 
equations of motion for steady flow. In the MS model 2’ X 2’ grid-points represent 
the terrain in real space, but computations are performed in a Fourier-transformed 
mode. The number of complex Fourier coefficients at each vertical level selected for 
solution evaluation is K = (2’-’ + 1 j 2’; since I and J are typically 7 OT 8? 
K - 8,300--33,000. For each coefficient, the modified Besse! function of the second 
kind, zeroth order, K,, must be evaluated with four different arguments, two of which 
must be recomputed at each level, in order to determine the two components of 
horizontal wind velocity perturbation. In addition, K, must be evaluated twice for 
each Fourier coefficient for the purpose of computing the shear stress perturbation a: 
the surface. 

Simple arithmetic indicates that K, or K, must be evaluated 2K(N + 2) times, 
where N is the number of vertical levels. Typically, N - 1 - 5. Hence in the MS 
model, Bessel-function computations are usually done 5 X IO”--5 X 10’ times per run 
Furthermore, the arguments are complex and the evaluation is done by use of 
converging series (Abramowitz and Stegun [3], hereinafter AS). Clearly, one would 
like to do these computations as efftciently as possible while still retaining sufficient 
accuracy (typically four significant figures for the kind of physical problems to which 
the model is applied). 

The requirement for efficiency becomes even more acute in the model of Waimsley 
er al. [4], hereinafter WST, who extended the MS model to allow pressure pertur- 
bations to be functions of height as well as wavenumber in the momentum equations. 
In WST, terms appear which are additional to those involved in MS. In fact, there are 
three integrals each of which involves either I, or K, in the integral. Each integral is 
evaluated numerically using M-point Gaussian quadrature. One of the integrals is 
computed over a semi-infinite domain, so evaluation is in two parts (one part 
involving a change of variablej and hence 2M Gaussian points are needed. Functions 
I,, I, ) K, r K, ) or combinations thereof, multiply the integrals. The result is an 
increase in the number of evaluations of Bessel functions to 4K[(I@ + 1) 
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(N + 1) + I], approximately 15-20 times that of the MS model for a typical value of 
M= 10 and, as before, N- l-5. In a recent application of the MS and WST models 
(Walmsley and Howard [5]), computation time on a CYBER 176 for I = J= 8, 
N = 1, M = 10 increased from 18 set for MS to 380 set for WST. 

In Section 2, the calculation of the modified Bessel functions by ascending series 
and asymptotic expansions is described briefly. Then, in Section 3, a method of table- 
look-up and interpolation is outlined. This method is sufficiently accurate for most 
applications and substantially reduces the computation time for the WST model. In 
the above example, the time was reduced to 147 set; for N > 1 the relative 
improvement is even more spectacular, the tabulated values having already been com- 
puted. 

With regard to earlier related work, Scarton [6] describes the evaluation of J,(z) 
and I,(z). He does not consider K,(z) and is mainly concerned with extending the 
argument, z, into the entire complex domain rather than efficient evaluation with 
specified accuracy for a particular class of arguments. Sookne [7] also evaluates 
J,(z) and I,,(z) in double precision to an accuracy which is machine-dependent. K,(z) 
is not considered. Temme [8] gives a computer program for evaluating K,(z) and 
K,+,(z), where B is real, with a specified accuracy. His method is more general and, 
provided more than approximately 4,500 evaluations are required, slower than the 
present method. A comparison will be made in Section 4. 

2. SERIES CALCULATION OF MODIFIED BESSEL FUNCTIONS 

Formulae given by AS were used to calculate the modified Bessel functions. The 
ascending series form for I,(z), where z = x exp(i#), x is real and n > 0 is an integer, 
is derived from AS Eq. (9.6.10): 

In(z)= (z/V’ f A,, 
k=O 

where 

A,= l/n!, k = 0, 

Ak-,(+)/[k(n + VI, k > 0. 

For K,(z), Eqs. (9.6.11) and (9.6.13) may both be expressed as 

K(z) = ( WW) -n 4, 

+ (-l)“+’ W/2) W) 

+ (1/2)(-z/2)” s, 7 n > 0, (2) 



where 
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R,=O, 
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n=Q 
n-1 
2 B,, 

k=O 

n > cl, 

B,= (n - I)!, 

B,-,(--z*/4)/[k(n - k)l, 

k=O 

k > 0, 

S,= f [!f’(k+ I)+ !P(Y(n+k+ l)lA,* 
k=O 

Here Y(m), the Psi or Digamma function is given by AS Eq. (6.3.2): 

lu(m> = - Y, m=l 

Y(m- 1)+ l/(m- l), m > 1, 
(3) 

where y = 0.577216... is Euler’s constant. The recursive forms for A,, B,, C, and 
Y(u(m) facilitate numerical computation. The infinite series in (1) and (2), which 
converge for all z # 0, are considered to have converged when the ratio. R,, of the 
kth term to the sum of the preceding terms is such that 2 -p < R, < E, where E is 
specified and p is the computer precision in bits (excluding the bits used for the 
exponent). 

For the case of large values of Iz 1, both (1) and (2) converge slowly and are 
subject to computational round-off errors. This problem is avoided by the use of 
asymptotic expansions derived from As Eqs. (9.7.1) and (9.7.2): 

I,(z) = eZ(2?rz)-‘iZ F (-l)k c,, 
k:O 

where 

c,= 1, 

= c,- 1 [/i - (2k - l)*]/Skz, 

p = 4n2, 

K,(z) = e-“(7r/2z)“* 9 Ck, 
kc0 

For a fixed value of ! z I which is large but finite the series in both (4) and (5) diverge, 
as the ratio of successive terms exceeds unity. This situation often occurs with 
asymptotic expansions (see Whittaker and Watson [9, p. 1501). By truncating the 
series at the point where the magnitude of the terms is a minimum, however, an 
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FIG. 1. Gas acceleration (0, A) and incrrmental change of gas velocity (0, LI) as functions of time 
step iength. Convection problem. Box side length L = 5 cm: dT= 30 deg: number of space intervals: 
17 X 17. 3-point-backward time differencing scheme (drawn lines) and trapezoidal time differencing 
scheme (dashed lines). 

FIG. 2. As Fig. 1. Convection problem. Space intervals: 17 x 17. L = 50 cm, LIT= 200 deg (drawn 
iinesj: L = 2.5 cm, dT = 30 deg (dashed lines). 
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FIG. 3. As Fig. 1. Convection problem L = 2.5 cm, dT = 30 deg. Space intervals: 9 x 9 (A*, a) and 
I7X 17 (0,O). 
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TABLE II 

Normalizing Factors Used in Tabulating Modified Bessel Functions for Arguments of the Form 7 =I 
exp(k/4) = x( 1 + i),/~6 

Range of 
Argument 

x= Izl 47 I, Ko K! 

0.01 - 1 

l-40 

i 

eqz2 ) 
l-3a< 

b 

.l’= h(i/2j + y; a = l/&z; b = (2~~)“~; c = (:z/‘K)L’z 

The normalizing factors for I,(z) are derived by truncation of the converging series 
after one term in (1) and after two terms in (4). To obtain the normalizing factors for 
K,(z) with Iz/ < 1, (2) is first expressed in the Neumann series form (AS Eq, 9.6.53 
and 9.6.54). Truncation after the k = 0 terms of those formulations gives the required 
factors. For Izj > 1, normalizing factors for K,(z) result from truncation after two 
terms in (5). 

The normalized functional values of I,(z) and K,(z) having been tabulated for 
n = 0 and 1, interpolated values can be derived for 0.01 < Ir / < 40 as follows. If xi 
and x, are the lower and upper limits of the range of one of the three sub-tables and 
N is the number of points in that sub-table, and if the value of x at the interpolated 
point is such that X, < x < x,+ r, then m is determined from 

m=((iv i)(x-xl)/(x~v-xxLj?+ 1, (7) 

TABLE III 

Method of Determination of Normalized Value L(X), of Modified Bessel Functions I,. I,. K, and K, for 
Arguments of the Form z = ~(1 + ij,i& 

Classification 
of Argument 

Range of 
Argument 

x=/z1 
Normalized Value 

L(x? 

Very small 
Small 

Intermediate 
Large 

Very large 

x < 0.01 
0.01 <.Y & 1 

1 <.u<8 
8<s<40 

40 < x 

1 

Eq. 18) 
%. @I 
Eq. (8) 

1 
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where ( ) denotes integer truncation. Letting L, E L(x,) represent the tabulated 
normalized values of I,(z) or K,(z), then the linearly interpolated value is 

L(.u)=L,+(x-xx,)(L,+,-LL,)/dx. (8) 

Table III shows the range of x for which (8) is applied. 

4. COMPARISON OF ACCURACY AND EFFICIENCY WITH TEMME'S METHOD 

Since the tabulated values are computed only once, it makes sense to perform the 
calculations with high accuracy, thereby reducing to a minimum the errors arising in 
the interpolated values. Due to the availability of a CDC CYBER 176 computer with 
precision p = 48 (i.e., approximately 14 decimal digits), it was decided to set 
& = lo-IO. Interpolated values of II,,(z)1 and IK,(z)l had relative errors less than lo-” 
at all values of z = x( 1 + i)/fi. Cyber 176 CPU execution time was 0.75 set to set 
up the tables and 0.47 set for 4,290 evaluations of each of K, and K, in the range 
Iz( = 1o-3 to 102. 

Temme’s [8] program was recoded in FORTRAN (with one typographic error 
corrected) and run with parameter eps = lop5 which gave relative errors for K,(z) 
and K,(z) less than 1O-4 at all values of z = -u( 1 + i)/\/z. CPU execution time was 
1.89 set for 4,290 evaluations of each of K, and K, at the same arguments as for the 
interpolation method. Thus, for comparable accuracy, a simple calculation shows that 
the interpolation method is faster provided the total number of evaluations exceeds 
approximately 4,500 which is clearly the case in the applications described in 
Section 1. It should be noted, furthermore, that the tabular values may be computed 
and stored, thus eliminating the 0.75 set start-up time. The interpolation method 
would then be faster, regardless of the number of evaluations. 
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